CX3CL1, a chemokine finely tuned to adhesion: critical roles of the stalk glycosylation and the membrane domain
نویسندگان
چکیده
The multi-domain CX3CL1 transmembrane chemokine triggers leukocyte adherence without rolling and migration by presenting its chemokine domain (CD) to its receptor CX3CR1. Through the combination of functional adhesion assays with structural analysis using FRAP, we investigated the functional role of the other domains of CX3CL1, i.e., its mucin stalk, transmembrane domain, and cytosolic domain. Our results indicate that the CX3CL1 molecular structure is finely adapted to capture CX3CR1 in circulating cells and that each domain has a specific purpose: the mucin stalk is stiffened by its high glycosylation to present the CD away from the membrane, the transmembrane domain generates the permanent aggregation of an adequate amount of monomers to guarantee adhesion and prevent rolling, and the cytosolic domain ensures adhesive robustness by interacting with the cytoskeleton. We propose a model in which quasi-immobile CX3CL1 bundles are organized to quickly generate adhesive patches with sufficiently high strength to capture CX3CR1+ leukocytes but with sufficiently low strength to allow their patrolling behavior.
منابع مشابه
Functional adhesiveness of the CX3CL1 chemokine requires its aggregation. Role of the transmembrane domain.
In its native form, the chemokine CX3CL1 is a firmly adhesive molecule promoting leukocyte adhesion and migration and hence involved, along with its unique receptor CX3CR1, in various inflammatory processes. Here we investigated the role of molecular aggregation in the CX3CL1 adhesiveness. Assays of bioluminescence resonance energy transfer (BRET) and homogeneous time-resolved fluorescence (HTR...
متن کاملExpression and targeting of CX3CL1 (fractalkine) in renal tubular epithelial cells.
The chemokine CX3CL1 plays a key role in glomerulonephritis and can act as both chemoattractant and adhesion molecule. CX3CL1 also is upregulated in tubulointerstitial injury, but little is known about the subcellular distribution and function of CX3CL1 in renal tubular epithelial cells (RTEC). Unexpectedly, it was found that CX3CL1 is expressed predominantly on the apical surface of tubular ep...
متن کاملIdentification and Molecular Characterization of Fractalkine Receptor CX3CR1, which Mediates Both Leukocyte Migration and Adhesion
Leukocyte trafficking at the endothelium requires both cellular adhesion molecules and chemotactic factors. Fractalkine, a novel transmembrane molecule with a CX3C-motif chemokine domain atop a mucin stalk, induces both adhesion and migration of leukocytes. Here we identify a seven-transmembrane high-affinity receptor for fractalkine and show that it mediates both the adhesive and migratory fun...
متن کاملThe chemokine CX3CL1 promotes trafficking of dendritic cells through inflamed lymphatics
Tissue inflammation is characterised by increased trafficking of antigen-loaded dendritic cells (DCs) from the periphery via afferent lymphatics to draining lymph nodes, with a resulting stimulation of ongoing immune responses. Transmigration across lymphatic endothelium constitutes the first step in this process and is known to involve the chemokine CCL21 and its receptor CCR7. However, the pr...
متن کاملCell surface-anchored SR-PSOX/CXC chemokine ligand 16 mediates firm adhesion of CXC chemokine receptor 6-expressing cells.
Direct contacts between dendritic cells (DCs) and T cells or natural killer T (NKT) cells play important roles in primary and secondary immune responses. SR-PSOX/CXC chemokine ligand 16 (CXCL16), which is selectively expressed on DCs and macrophages, is a scavenger receptor for oxidized low-density lipoprotein and also the chemokine ligand for a G protein-coupled receptor CXC chemokine receptor...
متن کامل